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I. INTRODUCTIOI’T 

The synthesis of nonlinear control lers  f o r  nonlinear, time-varying p lan ts  

according t o  the Direct Nethod of Liapunov has received considerable a t t en t ion  

i n  the l i t e r a t u r e  over the pas t  several  years. I n  a l l  such control lers ,  cor- 

rec t ive  feedback is  generated by means of an i d e a l  signum function, the  

cha rac t e r i s t i c s  of which can only b e  approximated by some imperfect physical  

element. In  as much as t h i s  imperfection could a f f e c t  the s t a b i l i t y  of the 

cont ro l le r ,  i t  becomes necessary t o  analyze the imperfect motion t h a t  could 

resu l t .  

motion to  be bounded and t o  f ind  a realistic estimate of this bound i n  tenus 

of design parameters. 

add r igo r  t o  p rac t i ca l  applications of t he  synthesis techniques but  a l s o  in- 

crease t h e i r  design f l e x i b i l i t y .  

tern has been considered by Slonopoli 

bound rendered it inef fec t ive  as a desicn too l  

In pa r t i cu la r  it is desired t o  obtain conditions su f f i c i en t  f o r  such 

It is therefore intended t h a t  this study t~i11 not  only 

The existence of such a bound f o r  some sys- 

however, the conservative nature  of t he  2 

In the  following sect ion the problem i s  formulated mathematically fol- 

lowing a br ie f  ou t l ine  of a typical  Liapunov syrrthesif; technique. 

I n  Section 3, spec i f i c  imperfections are enumerated an6 it  is shown t h a t  

a l l  give rise t o  a common state-space region outs ide of c,rhich the  imperfect 

cont ro l le r  must behave as the ideal.  This reZion of imperfect control  is  

found t o  be e s s e n t i a l  t o  the subsequent bound development. 

The next l og ica l  s t e p  is t o  invest igate  motion of the  system i n  the reZion 

This is  carried out i n  Section 4 where the assumption of 

A necessary and s u f f i c i e n t  condition is found f o r  i m -  

of imperfect control. 

canonic form is made. 

per fec t  motion t o  be bounded. This condition, obviously necessary f o r  bounded- 

ness  of motion not necessar i ly  confined t o  the  region, cannot, v i thout  fur ther  

consideration, be sham t o  be suf f ic ien t .  

1 



Sufficiency is established i n  Section 5 a f t e r  it is shown t h a t  the  idea l  

cont ro l le rs  considered actual ly  guarantee tha t  the s ta te  vector  approaches the  

switching plane monotonically. 

gat ion of the synthesis technique and, f o r  purposes of t h i s  report ,  provides 

a necessary and s u f f i c i e n t  condition f o r  the  bound, calculated i n  section 7. 

This proof opens the door to fu r the r  invest i -  

In Section 6 some background is yrovided t o  j u s t i f y  the development i n  

Section 5 and some design improvements are discussed. 

Section 8 is comprised of two i l l u s t r a t i v e  examples and Section 9 con- 

t a i n s  a discussion of the bound development t o  non-canonic systems. 

2. PROBLEI STATEMENT 

The problem considered herein per ta ins  t o  single-input, single-output 

time-varying nth-order control  systems which can be represented nonlinear 

mathematically by the  following vector d i f f e r e n t i a l  equation 

- f = A(t)x + f(x,u,t) + L(x,u,t)Sgn{y(& 1 . (1) 

Here n, f and b are n-dimensional column vectors ,  A ( t )  is n x n and the scalar 

signum function, Sgn, having sca la r  argument , Y (5) ? is  defined as 

where u is defined within t h e  l imi t s  

; 101 5 1 

Linear switching is assumed, thus 

3 

Furthermore i t  w i l l  be assumed that & is bounded f o r  bounded 5. 

The f i r s t  two terms on the r igh t  of (1) represent t he  open-loop plant.  

The t h i r d  term represents corrective feedback employing i d e a l  switching through 

2 



the signum function. 

on the  Second Method of Liapunov or through some analageus procedure involving 

a Liapunov-type function, is assumed t o  guarantee tha t  motion, r(t,x+,t,), of 

(1) is asymptotically s t ab le  f o r  a l l  (?IOytO)ER. 

This feedback, derived through synthesis procedures based 

The system (1) is therefore a general  re lay control  system* employing 

l i nea r  switching which, under the assumption of i d e a l  switching, is asymp- 

t o t i c a l l y  s table .  

Grayson' 

l i n e s  is  summarized by Grayson . 
is the  def in i t ion  of a posit ive-definite quadratic Liapunov function 

The synthesis of such Liapunov control lers  is t rea ted  by 

Monopoll', Lindorf f 3,  Taylor4 and others and work along these 

S Character is t ic  of t h i s  synthesis technique 

( 5 )  T V(XJ = x Px 
the tine der ivat ive of which is  maintained negative de f in i t e  by control l ing 

the s ign  of a cer ta in  term, 5 P(9O ... f ) .  This is accomplished by means of a 

correct ive feedback s igna l  appearing i n  f .  This s igna l  is given a magnitude 

s u f f i c i e n t  t o  guarantee t h a t  i ts  sign douinate the sign of f and it is given 

the  s ign  of -E P(O0.. .1). 

f a c t  t ha t  the sign-generattng function must not  alter the magnitude of the 

feedback signal.  Therefore, i dea l  switching throug3 the sipnum function is 

essent ia l .  However, since corrective feedback is  formulated outside the p lan t  

and s ince  any physical or  e l e c t r i c a l  switching eleuent can only approximate 

t3e i d e a l  signum function character is t ics ,  the designer must concern himself 

with t he  possible consequences of t h i s  approximation. 

whech may exhibi t  f i n i t e  l i nea r  range, dead-zone or possibly hysteresis ,  the 

designer must analyze the motion of (1) tha t  nay r e s u l t  due t o  t h i s  imperfect 

control.  

T 

T Of paramount importance i n  t h i s  technique is the  

Forced t o  use  an element 

This analysis would apply also t o  cases wherein the designer may wish t o  

del ibera te ly  incorporate imperfection i n t o  the switching element t o  conserve 

* The term "relay control" does not necessarily r e fe r  t o  the physical device 
but r a the r  t o  i t s  ideal ized charac te r i s t ic ,  the signum function. It may v e l 1  
be t h a t  ac tua l  switching is  achieved s t a t i ca l ly .  3 



f u e l  o r  energy or  t o  s a t i s f y  sone such constraint .  

Inperfect  control  may also r e s u l t  when addi t ive noise en ters  i n t o  state 

measurement and thus a f f ec t s  the instrumented switching function argument, 

Y (Ir> 
It becomes apparent t ha t  i n  prac t ica l  implementation, motion of the im-  

perfect  control  system is no longer governed by (1) to be asymptotically s table .  

That is, the sim of V is no longer guaranteed negative def in i te .  
. 

The problem 

considered herein i s  t h a t  of studying the inperfect  control  of systems which 

in idealized form are described by (1) and which have been designed via 

Liapunov's Direct Method. After  obtaining su f f i c i en t  conditions f o r  the re- 

su l t ing  motion to  be bounded, the problem becomes t h a t  of obtaining a realis- 

t i c  estimate of t h i s  bound. 

I n  the  following sect ion,  cont ro l le r  imperfections are sham t o  give rise 

t o  a common state-space region outside of which motion of the inperfect  con- 

t r o l l e r  is i den t i ca l  t o  tha t  of the i d e a l  control ler .  This is terned the 

region of imperfect control. 

3. FJ3GION OF IIPERFECT COilTTROL 

We now consider the imperfect control  t h a t  r e su l t s  when the signum func- 

t ion ,  Fig. la, is approximated by sone p rac t i ca l  element such as a saturat ing 

amplif ier ,  Fig. lb, a relay with dead-zone, Fig. IC, or  hysteresis ,  Fig. Id, 

or when bounded addi t ive transducer noise en ters  i n t o  the measurement of the 

signum function argument, y@. 

magnitude 2, or grea te r  the approximating functions coincide .rrlt!i the  idea l ,  

thus motion is described by ( I ) .  However, f o r  y(z) of magnitude less than 

L t he  approximations are poor i n  t h a t  they may have insuf f ic ien t  magnitude 

o r  incor rec t  sign. 

It is apparent i n  Pig. 1 t h a t  f o r  y(& of 

I n  t h i s  case motion is  not  governed by (1) and inperfect  

4 



control  resu l t s .  It is important t o  note,  however, t h a t  imperfect control 

can only result i n  the state-space region SI defined by 

Q - (Is: IY( r r> I  < Ll. ( 6 )  

This is  termed the region of imperfect control  f o r  the imperfections enumerated 

a )  Idea l  Signum Function b) Saturating Amplifier 

c) Relay with Dead Zone 

t Rel( ) 

d) Hysteresis Element 

'-1 

Figure 1 

Signum Function and Approximations 

This region of imperfect control is a l so  cmmon t o  other imperfections 

such as proportional transudcer noise, proportional transducer erroq measure- 

ment delay and f i n i t e  switching t i m e .  

f o r  the case of a percentage e r ror  of a transducer i t  follows t h a t  over any 

compact set  i n  the state space a number L can be found t h a t  bounds the measure- 

ment imperfection i n  y @ .  

i n  ( 6 ) .  

In the case of proportional noise and 

Thus t he  region of imperfect control  is as described 

A similar region r e s u l t s  i n  the case of measurement delay and f i n i t e  

switching time. Eowever, here, imperfect control  is possible only i n  a cer ta in  

5 



time period, A, following the tkne t h a t  switching should occur, 

much as i d e a l  switching occurs on the switching surface,  y o  = 0 ,  and since 

- 5 is bounded f o r  bounded z i t  follows t h a t  subsequent motion z ( t , S , t s )  f o r  

t 2 t '  t + A is  confined t o  sone bounded region about x 

of such a number L is guaranteed. 

. I n  as 
tS 

and the existence 
6 S -s 

Having established the state-space region i n  which imperfect control  can 

r e s u l t  due t o  the imperfections considered, i t  is now helpful  t o  inves t iga te  

the possible  motions of i n  such a region. 

4. BOUNDEDNESS OF SOLUTIOXS IN TEE FEGIOEI OF INF'EfiFECT CONTROL 

It has been shown tha t  motion of the imperfect control system is described 

exact ly  by (1) when the  state vector z is  i n  O ' ,  the  complement of the region 

of imperfect control,  n. 
as though they were asymptotically s t ab le  provided they are a l s o  within E, 

the  domain of asymptotic s tabi l i ty  of (1). 

systems usually tends t o  the switching surface y(xJ = 0 and thus t o  SI. 

- x en te r s  fl imperfect control  can r e s u l t  and asymptotic s t a b i l i t y  is no longer 

guaranteed. x ) 

under the assumption t h a t  ~( t r tO,xO)ESl  f o r  a l l  t 2 to. This 1 7 1 1 1  provide a 

necessary condition f o r  bounded motion of the imperfect system throughout R 

and w i l l  lead the  way for the  bound calculation. 

Therefore, motions en t i r e ly  contained i n  i2' behave 

:lowever, motion of re lay control  

!?hen 

It is the purpose of t h i s  sec t ion  t o  study the motion x(t,t 0 0-0 

The general  method of a t tack  is  t o  treat  the  constraint  

- x(t,tO,%)&, f o r  a l l  t 2 t9, 

which is equivalent t o  the constraint  

I Y C E ) f  L,  ( 8)  

as a state-space constraint  on one of the state var iables  x This inequal i ty  

cons t ra in t  on x is then framed as an equal i ty  by introduction of a s lack 

i' 

i 

(7) 

6 



variable ,  a ( t )  . 
state systen independent of the scalar input u ( t )  but  dependent on the s lack  

var iable  a( t )  which is t rea ted  as an input. 

bounds, necessary and s u f f i c i e n t  conditions f o r  the boundedness of solut ions 

of the reduced-state system are then found. These conditions are shown to be 

necessary and s u f f i c i e n t ' f o r  the boundedness of solut ions of the  imperfect" . '  

system throughout 8. C .  

Then subs t i tu t ion  f o r  xi i n  (1) w i l l  r e s u l t  i n  a reduced- 

Allowing u ( t )  t o  vary within i ts  

.. 

The discussion up t o  this point has been general. Bowever, s ince the  

technique does not apply t o  a l l  sys t ems  i n  the form of (1) it i s  in s t ruc t ive  

t o  treat one spec ia l  form and then discuss extension. It should be pointed 

out t h a t  the form t rea ted  is  t h a t  pa r t i cu la r  form required of the  synthesis 

techniques of references 1 through 4. 

Assume (1) is i n  t he  Canonic Form, t h a t  is, 

where 

Linear 

irp = x3 

. 
e 

ir = x  n-1 n 

switching is assumed, 

n 

with the coef f ic ien ts  pi constant. Considering motion confined to the  region 

of imperfect control,  S2, defined i n  (6) which i n  t h i s  case is the hyperplanar 

7 



region centered about the switching hyperplane, it follows t h a t  

l Y k ) I  < L  
o r  e x p l i c i t l y  

(12) 

Rearranging terms and assuming pn > 0, t h i s  may be framed as a constraint  on 

X n' 

n- 1 L c x  < - - I  
p* p* i o 1  i i P, 

n-1 

*n in1  
p x  e- l - -  1 

n 1 p i x i  
1 -  

which i s  s a t i s f i e d  if 

n-1 

where a ( t )  varies i n  an unknmm manner sa t i s fy ing  

fa( t )  1 < Upn. (16) 

In l i g h t  of t h i s  rea l iza t ion ,  the notion of g through R according t o  (1) 

is described by the following set of n-1 d i f f e r e n t i a l  equations 

iil - x2 
. 

. . 
2 " X  i i+l . 
. . 

along with the  l i n e a r  (15).  I n  other words, motion of t h e  n t h  order,  nonlinear, 

time-varying, single-input single-output d i f f e r e n t i a l  system (9), subjected t o  

3 



the l inear  state-space constraint ,  (121, may b e  characterized by the (n-l)st- 

order constant d i f f e r e n t i a l  system with bounded input a(t). In  as much as t he  

subsequent calculat ion of an e r ro r  bound is .based so le ly  on t h i s  reduced-state 

system, it is  appropriate a t  t h i s  point t o  cmpare t h i s  reduced system (17) 

with the  or ig ina l  control  system, (9). 

The reduced systen? characterizes the or ig ina l  system for the case z~S2 

i n  t h a t  it is capable of providin,o any motion t h a t  could be real ized by the 

o r ig ina l  system. This is  accomplished 5y means of the slack var iab le  a( t ) .  

From the def in i t ion  of a( t ) ,  i t  follows t h a t  

y ( t )  = pna(t) .  (18) 

Thus motion of the reduced systern with constant a corresponds t o  motion of the 

or ig ina l  system on a constant y plane, and as u var ies  the y-plane containing 

- x varies. 

t reated as motion p a r a l l e l  to  the  svitching plane and notion perpendicular t o  

the waitchin:: plane. It is by nature of t h i s  f a c t  t h a t  the order of (17) i s  

lover than t h a t  of (9). 

Therefore, motion of the or ig ina l  system, (g), i n  the region 0 is  

It- .should be noted t h a t  some deyree of conservativeness is present i n  the  

reduced system due to the  f a c t  that  i t  is caphle  of motion tha t  the or ig ina l  

system cannot achieve. 

der ivat ive of a ( t ) ,  x n 

system. 

t i on  of bounded &. 

In  particular, by placing no constraint  on the tine 

is allowed t o  change instantaneously i n  the reduced 

For the o r ig ina l  system, t h i s  is not possible i n  l i g h t  of the assump- 

Of importance here is  the f ac t  tha t  the set of a l l  possible solutions of 

the o r ig ina l  system are contained i n  the set of a l l  possible solut ions of the 

reduced system. 

toundedness of solut ions of (17). l%is tiill be considered i n  the following 

discussion. 

Thus boundedness of solut ions of (9) vould be implied by 

9 



Consider the vector representation of the reduced system (17) 

k * A& + $a(t) 
1 

where x- is the reduced state vector, ( x ,  , x,, . . x )T and n-1 A 

Ar O1 

I L  

'0  1 0 o . . . .  

0 0 1 o . . . .  

Y G o  
0 0 1  1 O I  

J 

5 .  

0 

0 

0 

. 

. 
€ 

a* (n-1) x (n-1) and (n-1) x 1 constant matrices respectively and la(t)l is  

bounded by (L/pn). 

invariant  system with bounded input is guaranteed by classical s t a b i l i t y  theory. 

That is, all solut ions are bounded if and only if Ar is a s t a b i l i t y  matrix. 

Existence of a bound on..solutions of t h i s  linear, time- 

Recalling tha t  for the case a(t) = 0, (19) represents motion on the 

switching plane, y(xJ = 0, it is l o g i c a l  t o  require t h a t  such motion be s tab le ,  

i n  the classical sense. 

s ion  and it is considered t o  be v a l i d  f o r  most systems i n  the form of (9). 

Notice, however, tha t ,  due t o  the conservative nature -bf .the reduced system, the 

assumpti'on ow Ar has bnly been shown t o  be suf f ic ien t .  

This condition is necessary €or the remaining discus- 

In  l i g h t  of t h i s  assumption, solutions of the reduced system are bounded 

and this implies t h a t  solut ions of the  or ig ina l  system, (91, x(t,tO,%)ED 

a l l  t 2 t 

shown, however, that this escape would 'occur f o r  the case when A 

s t a b l e  matrix: Thus. in terns of boundedness of solut ions of. .the or ig ina l  

f o r  

are bounded and 'escape' of 5 through Q is ruled out. It W i l l  be 
0' 

is an un- r 

8.. ..:. 

10 



system, the s t a b i l i t y  cons t ra in t  is &o necessary. 

above 

with l i n e a r  switching, when such motion is confined t o  the region of imperfect 

control, SI, w e  can now consider the unconfined motion of the  imperfect system 

throughout the larger  region R. 

Having establ ished the 

Condition f o r  boundedness of motion of the  canonic system, (91 ,  

5. BOUNDEDNESS THROUGHOUT THE DOMAIN OF ASYMPTOTIC STABILITY 

To summarize the development t o  t h i s  point ,  i t  has been shown by means of 

the  reduced system t h a t  motion confined t o  Q is bounded providing motion on the  

switching plane y(& - 0 is bounded, This is guaranteed i f  the reduced system 

matrix Ar is a s t a b i l i t y  matrix. The problem t o  be considered i n  t h i s  sec t ion  

per ta ins  to  boundedness of motion i n  R. 

Boundedness of motion confined t o  0 f o r  a l l  t to is cer ta in ly  necessary 

f o r  boundedness In R but  what is required here  I s  a suff ic iency condition. 

With the a i d  of Fig. 2 it w i l l  now be shown t h a t  boundedness of  in SI does 

not Immediately imply boundedness i n  R and thus fu r the r  development is re- 

quired. 

Notice t h a t  motion sc(t,t,,x+) confined t o  52, Fig. 2, f o r  a l l  t 2 to and 

any 

This follows from the s t a b i l i t y  matrix assumption on Are Response t o  the 

I n i t i a l  condition %(to) decays t o  the  o r ig in  and response t o  the bounded 

input,  a(t)  is bounded. Therefore, any motion confined t o  Q,  or ig ina t ing  

according t o  (17) ultimately l ie  within some bounded region BIIc0. 

i n s ide  Bn is contained in  Bn f o r  a l l  subsequent t i m e .  

t r a j ec to ry  or iginat ing at  %EB* which is permitted t o  leave il. 

ponding t o  the  point ,  a, a t  which g leaves SI is a Liapunov contour Va i n s ide  

of which i t  must remain when it i s  contained i n  SI'#@. 

evident  t h a t  11 must re turn  t o  il at some point b ins ide  the Va contour. 

However, consider a 
a 

Corres- 
a 

From Fig. 2 i t  is 
a 

11 
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Figure 2 

Escape by C y c l i c a l  Motion of x 
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A 

However, nothing a t  t h i s  point rules  out the p o s s i b i l i t y  of 

a t  some point c outside Va and continue i n  t h i s  fashion t o  escape: 

cussion demonstrates t h a t  fur ther  development is required t o  show t h a t  the 

condition on A is  necessary and su f f i c i en t  t o  guarantee the boundedness of 

motion of the  imperfect control  system throughout R. 

then leaving Q 

This dis- 

r 

A t  t h i s  point,  the  c l a s s  of systems which can be t rea ted  fu r the r  would 

were it not for the  f a c t  t ha t ,  i n  physical  implemen- became qui te  l imi ted ,  

t a t i o n  of 

. synthesis  

function. 

column of 

the Liapunov cont ro l le r ,  choice of a Liapunov function i n  the 

procedure is re f lec ted  only in  the  coef f ic ien ts  pi i n  the switching 

These terms are equal t o  the respective terms p i n  the r i g h t  hand 
i j  

P, the  quadrat ic  Liapunov function matrix, (3).  Thus a par t i cu la r  

set of terms {pi} could correspond t o  synthesis based on any one of several 

pos i t i ve  d e f i n i t e  matrices P. 

P ' s .  

pin = pi, i = 1 , 2, . . . n to  analyze motion of the  Liapunov control ler .  

is one pa r t i cu la r  matrix P, corresponding t o  the set {p I ,  which f a c i l i t a t e s  

f u r t h e r  development of the bound i n  R. 

The synthesis  procedure based on a posi t ive semi-definite Liapunov function is 

considered i n  the next sec t ion  where i t  is found t o  have mny advantages. 

is he lpfu l  t o  summarize t h a t  discussion at t h i s  point. 

I n  fac t ,  there are an i n f i n i t e  number of such 

The designer is therefore  f r ee  t o  choose any P with the pa r t i cu la r  

There 

i 

This P matrix i s  pos i t ive  semi-definite. 

It 

For the  class of Liapunov control lers  which can be designed according t o  

a pos i t i ve  semi-definite Liapunov function it follows t h a t  under the  assumption 

of i d e a l  switching, asymptotic s t a b i l i t y  can be achieved. In t h i s  case the  

Liapunov function V(E) vanishes not  only a t  the o r ig in  but  a t  a l l  points  on 

a hyperplane i n  the state space. 

plane. 

in t h e  ideal system w i l l  approach the  switching plane monotonically. 

This hyperplane is necessar i ly  the switching 

Furthermore, negative semi-def i n i t eness  of $(IC, t) assures t h a t  motion 

However, 

13 



c 

as before imperfect control  can occur in s ide  Q, ( 6 ) ,  but  w i t h  a semi-definite 

Liapunov function constant - V(x) contours coincide with constant: - Iy(xJl con- 

tours. 

V h )  2 VL, the  corresponding Liapunov contour, it follows t h a t  once x enters  

Q it cannot leave Q. 

(171, which represents t h i s  motion i n  R, is a va l id  bound f o r  motion of the  

system i n  R. 

more, it is shown t h a t  any system which reduces t o  s t a b l e  Ar can be analyzed 

with pos i t ive  semi-definite V(&. 

all such canonic systems represented by (9). 

In as much as 9(1~,t) i s  s t r i c t l y  negative f o r  Iyl 2 L and thus for 

Therefore the bound obtained f o r  the reduced system, 

This bound is v a p d  for  any i n i t i a l  condition within R. Further- 

The bound technique appl ies  therefore t o  

Thus f o r  canonic systems employing l i nea r  switching the s t a b i l i t y  matrix 

becomes necessary and s u f f i c i e n t  cons t ra in t  on the  reduced system matrix, A 

t o  guarantee boundedness of the imperfect system. I n  the following sect ion 

it is shown t h a t  t h i s  condition on Ar is implied by asymptotic s t a b i l i t y  of 

the i d e a l  system, ( l ) ,  assumed at the onset. 

calculat ing the bound w i l l  be considered. 

r' 

In  Section 7 the problem of 

6.  DESIGN GENERALIZATION 

I n  t h i s  sect ion we consider systems designed from d e f i n i t e  Liapunov 

functions as though they w e r e  designed from semi-definite functions. 

f i c a t i o n  for choosing semi-definite functions V ( 5 )  and i(E,t) is based on the  

i n t u i t i v e  notion t h a t  i f  V vanishes on some manifold i n  

everywhere else and i f  

vanishes, then V must decrease monotonically u n t i l ,  a f t e r  a f i n i t e  t i m e ,  i t  

reaches zero and remains zero f o r  a l l  t i m e .  These conditions therefore dr ive  

- x t o  the manifold. 

lowing theorem a t t r ibu ted  t o  LaSalle', which is modified f o r  appl icat ion t o  

Jus t i -  

and is pos i t ive  

is negative except on the same manifold, where i t  

More formally, the above notion is expressed i n  the fol-  

14 



the  problem a t  hand, 

c 

Theorem 1: L e t  \y be a closed and bounded (compact) set i n  ( E )  
w i t h  the  property t h a t  every so lu t ion  of (1) which begins i n  Y 

remains f o r  a l l  t i m e  i n  I. Suppose there  is a scalar function 

V(xJ which has continuous f i r s t  p a r t i a l s  i n  V and is such t h a t  

V ( 3 , t )  5 0 i n  V. 

6(x,t) can vanish. 

approaches E monotonically as t + Q). 

L e t  E be the set of a l l  poin ts  in Y where 

Then every so lu t ion  z(t,tO,lFg) with 

For the region I we take the l a rges t  contour of the  posi t ive-def ini te  

Liapunov function which is en t i r e ly  contained I n  R. 

the  in te rsec t ion  of the c(x,t) = 0 set and Y .  

The set E then becomes 

Solutions of (1) or ig ina t ing  

within Y theref o re  nus t approach E monotonically , 

If y(rr) and V(d are t o  vanish on the  same plane then s ince V(& is 

quadrat ic  it must be t h a t  

or expressed i n  quadrat ic  form 

T v(x) = 

the  elements of P must be 

The time derivat ive is then 

The synthesis  procedure i n  t h i s  case involves forcing s u f f i c i e n t  magnitude of 

the  cont ro l  term appearing i n  so t h a t  its sign governs the s ign of f and i n  

addi t ion guaranteeing t h a t  + not vanish except on y = 0. 

then given the s ign  of (-y) and negative semi-definiteness of 

The control  term is 

is assured. 

The set E then is  the in te rsec t ion  of the  switching plane with Y. By 

LaSalle's theorem, the  i d e a l  system w i l l  a t t c t n  E and therefore  reach the 

15 



switching plane y(xJ = 0. I f  t h i s  system is t o  be asymptotically s t ab le  i n  

some region R, then subsequent motion on the  switching plane must be asymp- 

t o t i c a l l y  s table .  

plane is described by the reduced-state system with a ( t )  = 0 ,  t h a t  is 

It w a s  pointed ou t  earlier t h a t  motion on the switching 

where 

1 0  1: 0 1 0  

This motion is asymptotically s tab le  i f  and only if Ar is a s t a b i l i t y  matrix. 

It becomes apparent t h a t  the  designer is not  f r e e  t o  treat w e r y  system 

a8 through it were designed with semi-definite V but  r a the r  only those systems 

having coef f ic ien ts  pi which cause a l l  (n-1) roots of Ar t o  have negative real 

pa r t .  

t h a t  class of systems which reduce t o  s t ab le  Ar and t h i s  is necessarily t rue  

of a l l  systems which guarantee asymptotic s t a b i l i t y  inside some region R. 

However, it has j u s t  been shown t ha t  the class which can be t reated is 

Since this w a s  assumed of the canonic system (9) we have general  application. 

. I n  sumwy, it has been shown t h a t  motion of the Liapunov cont ro l le rs  

considered 17 t h i s  report  can be  studied with semi-definite Liapunov functions. 

This implfes rtat. 5 epproaches SI monotonically and tha t  once it reaches Q,  

cannot leave the rc5j.m. Therefore the bound on 5 for motion i n  R is the same 

as t h e  bound on .,x_ for motiog confined t o  R. "3bs bound may be found by solu- 

t ion of the  reduced system, (19), and the If;*:.-r constraint ,  ( 1 4 ) .  

16 



Experience i n  applying the semi-definite design technique has pointed out 

severa l  advantages over the conventional procedure. 

culable bound, which in t he  next section is shown t o  be realistic, i t  lends 

i t s e l f  t o  realistic estimation of convergence time both t o  the switching plane 

and to  the  bound. 

which the control  l a w ,  is va l id ,  R, is grea t ly  simplified.  

this modification t o  the  desfgn procedure of such Liapunav cont ro l le rs  is 

recommended 

Besides offer ing a cal- 

Furthermore, determination of the  state-space region i n  

For these reasons, 

7. BOUND CALCULATION 

It has been shown t h a t  the bound on motion of the  imperfect control  

system i n  R can be found by solving f o r  the  forced response of the reduced 

sys tern 

2 - A x + s a ( t )  (27) 7 L-l 

t o  t h e  input  a( r )  bounded by 

Ia( t>f  2 LIP, 

f o r  t he  var iab les  xi; i = 1, 2, ... n-1 and by so lu t ion  of 

and 



I n  l i g h t  of 

Br 
and 

Bn 

the bound on }a ( t )  { a val id  bound on 5 is  B = B p B n  where 

i-1 h r (t-T)/dT, i = 1, 2, ... n-1) 

(33) 

* 
This general  procedure has been outlined only f o r  the  purpose of completing 

t h i s  general  development. It is very l i k e l y  t h a t  with a s p e c i f i c  problem i n  

mind the designer may be able  t o  determine a less conservative bound. 

The conservative n a w r e  of this general  cubica l  bound B r e s u l t s ,  i n  par t ,  

from applicat ion of the  t r i ang le  inequal i ty  to obtain Bn and from the f a c t  t h a t  

although Br is a va l id  bound f o r  motion of the reduced system from the or ig in  

q. = 2, i t  contains poin ts  which cannot possibly be reached by the system. 

Examples point  out  t h a t  a more reasonable bound could be based upon the subset 

Bk of Br which includes a l l  points  i n  rr, which can be reached from the or ig in  

x 

cording t o  (28). 

system can be controlled,  from the origin.  

is termed the 'reachable set' ,7 conventionally defined f o r  single-input, 

2 by appl icat ion of an admissable control,  a ( t ) ,  0 5 t 5 0 6 ,  bounded ac- 1 

The set B: is thus the set of a l l  points  t o  which the reduced 

This 'region of con t ro l l ab i l i t y '  

single-output, l inear ,  time-invariant system as 

t 

B' r {x 77 :x = jexp(Ar(t-?))%a(T)dr; a ( t )  admissable). 

In c e r t a i n  cases, it is possible  t o  ca lcu la te  the reachable set Bi of the 

reduced-state system with admissable a ( t )  being defined by (12). From t h i s  

( 3 4 )  

set a bound may be determined in the  fona of some generalized norm. Examples 

w i l l  show t h i s  method t o  be less conservative than tha t  out l ined previously, 

b u t  lacking generali ty.  However, a general  analog computer estimation technique 

w i l l  be outlined. 

18 



8 Calculation of the  reachable set has been out l ined f o r  an nth order 

l i nea r  system having d i s t i n c t  real eigenvalues. 

system t o  diagonal form, a procedure is outl ined f o r  finding the boundary of 

the reachable set of the  diagonal system. However, only i n  the case of f i r s t  

and second order systems, does t h i s  lead t o  an algebraic  expression which may 

be transformed back t o  the  o r ig ina l  system. In as much as second-order re- 

duced systems r e s u l t  from third-order cont ro l  systems, the above r e s u l t s  do 

have l imited application. This has led the author t o  develop a closed-form 

solut ion f o r  secmd-order systems having complex eigenvalues. 

are out l ined below. 

After transforming such a 

These r e s u l t s  

Framing t h i s  as an optimization problem incorporating bounded input,  

a f t ) ,  open endpoint and open time, wherein the  terminal cos t  function d i r e c t s  

the second-order reduced state system t o  achieve same extreme n-dimensional 

closed convex manifold, the  solut ion derived via the Maximum Pr inc ip le  is, in 

f a c t ,  the  minimum time solut ion with one a rb i t r a ry  i n i t i a l  condition. Inde- 

pendent of this unspecified i n i t i a l  condition on one ad jo in t  var iable ,  the 

optimal forcing, ao( t) , is found t o  be a square wave of magnitude L/p3, i n  

accordance with (28) and frequency equal t o  the undamped na tura l  frequency 

of the roots  of the  reduced-state system. 

For reduced systems of m & r s  g rea t e r  than two with roots  not  necessar i ly  

d i s t i n c t  there  is no known technique f o r  calculat ing the reachable set. 

ever ,  a very good approximation t o  the  reachable set can be obtained by 

simulating the reduced system (19) on an analog computer. 

s i b l e  by the  f a c t  t h a t  t he  reachable set is obtained only through maximum 

forc ing  of a(t). 

an x-y p l o t t e r ,  s ca l ing  time and magnitude i f  neceseary, an operator can 

readfly learn t o  manipulate a full-force bang-bang control  on a( t )  to  determine 

How- 

This is made pos- 

Observing any two states x , x , plot ted i n  real time on r j  

19 



the  region i n  the (x ,x ) plane which can be reached. This region is then the 
i j  

n(n-1) (x ,x ) projection of the  reachable set. Repeating t h i s  procedure i 3  
times leads t o  a l l  possible projection4 with those involving the state xu ob- 

tained by the addi t ional  simulation of (15). 

the reachable set can be constructed from the n(n-l) projections.  

Therefore an approximation of 

This approximation is found t o  be realistic in l i g h t  of the  f a c t  t ha t ,  

f o r  such systems as the  reduced system, (28), convexity of the  reachable set 

i s  guaranteed by convexity of the set of admissable control ,  (28) . There- 7 

fore ,  'holes' cannot occur. 

Examples of t h i s  bound estimation technique are given i n  the following 

sect ion . 
8. EXAMPLES 

I n  t h i s  sect ion the bound development w i l l  be demonstrated on a second- 

order  control  system w i t h  transducer noise imperfection and a fourth-order 

system with hysteresis .  

tia of the technique to  non-canonic systems. 

These examples lead the way t o  discussion of exten- 

Consider the i d e a l  cont ro l le r  synthesized f o r  a second-order p lan t  with 

9 square-law damping 

This cont ro l  system i n  i d e a l  form is asymptotically s t a b l e  in  a ce r t a in  region 

R about the origin. 

x2 it is  possible  tha t  imperfect control  can resu l t .  

be less than l/3 vo l t ,  thus the  region of imperfect control  is l imited t o  

However, due t o  noise  encountered in the measurement of 

This noise is known t o  

62 = €E: lxl + 2x21 < 2/31, (36) 

sketched i n  Fig. 3. 
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For motion within 0 i t  follows t h a t  

-2/3 x1 + 2x2 < 2/3 (37) 

/ 

By introducing the s lack  var iable ,  a ( t ) ,  t h i s  i s  s a t i s f i e d  i f  

"2 -bl + a ( t )  

where 

Ia(t)l < 1/3. (39) 

By knowledge of the f a c t  tha t  zd2, then, behavior of the state x2 is estimated 

by (38) and w e  need not be concerned therefore  with the second equation in 

(35). Subst i tut ing (38) i n t o  the first equation gives 

f l  = + a(t). (40) 

This is the  reduced system. 

f o r  calculat ing the  bound on xl. 

I n  t h i s  case no elaborate  technique is required 

It r e s u l t s  t h a t  

Ix,l < 2/3 (41) 

and from (38) and (39) 

Ix2{ < 2/3. (42) 

The bound on motion of the  imperfect system is therefore the in te rsec t ion  of 

( 4 1 )  and ( 4 2 )  and 0, sketched i n  Fig. 3. 

This bound can be reasoned from the phase-variable s t ruc tu re  of (35). 

I n  as much as gl - x2 then when x2 is pos i t ive  x1 must be increasing and when 

x is negative x1 must bkdecfeasing. 

Si i n  the f i r s t  and second quadrant of the phase plane must eventually lead t o  

the t h i r d  o r  four th  quadrant and visa-versa. 

through the l ine x1 = 2 /3  o r  x1 = -2/3 i t  can never go back through. 

es tab l i shes  the same bound as above. 

This implies t ha t  motion confined t o  2 

Furthermore, once L passes 

This 

The next example I s  a cont ro l le r  which, i n  i d e a l  fonn, guarantees asymp- 

t o t i c  s t a b i l i t y  of a fourth-order, dynamically-unstable plant.  The plant  
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cons is t s  of a r ig id ,  inverted pendulum mounted on a positioned cart, as 

sketched in Fig. 4. In  accord with the design in reference 10 the  assumption 

of small pendulum angle, 4, leads t o  l inear iza t ion  of the equations of motion 

which are then transformed In to  the c a n d c  form 

where 6 is a bounded term. 

analog computer. 

w a s  subs t i tu ted  for the  i d e a l  signum function. 

t h i s  was recorded on several x-y plot8 to  be compared with the theore t ica l  

This system was simulated on the  PACE 231-R 

A hysteresis  function, as described In Fig. Id, with b1/10, 

The system limlt-cycled and 

bound developed below. 

In t h i s  case motion in the  region of imperfect control  can be represented 

by 

x4 a -1/2Xl - 3/2X2 - 2 5  4- &(t), ( 4 4 )  

and the  reduced system 

- -1/2xl - 3/2x2 - 2x3 -b a ( t )  

where 

Ia ( t> l  < 1/20. 

To obtain an estimate of the bound, (44) and ( 4 5 )  were simulated on the  analog 

computer as discussed in the previous sect ion,  The r e su l t s  are found In  

Figures Sa, b, c t o  bound the l imit  cycle t h a t  occurred. In  f a c t  t h i s  bound 
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4 

is qui te  realist ic when compared with any other  estimate found i n  the litera- 

ture  . 2 

Although these examples involve a numerical bound i t  follows t h a t  the 

technique would y i e ld  an algebraic bound i f  the  problem were framed i n  t h a t  

manner. It I s  t h i s  property that renders the development useful  f o r  design 

purposes. Noteworthy also is the fact t h a t  the bound approaches zero with L. 

With these examples i n  mind, it is nar poss ib le  to discuss extention 

of the technique t o  non-canonic systems. 

9 .  EXTENSIONS 

It was pointed out in Section 4 that the  canonic form wa8 required of 

the  synthesis procedures of references 1 through 4. 

ment can be relaxed by employing semi-definite ra ther  than d e f i n i t e  functions 

for V and c. 
development t o  non-canonic sys terns. 

However, t h i s  require- 

It therefore  becomes important to  consider extension of the bound 

We now re turn t o  the general  equation (1). 

- 3 - A(t)% + f&,u9t) + k(g,u,t)Sgn{y(& 1 ( 4 7 )  

and recall that the assumption of canonic form, (9)* implies that A ( t )  be of 

the  form 

A ( t )  = 

1 0 Ob....... 

0 1 0 0 . .  

0 0 1 0  

. . . e . . .  

. .  . . . . . .  1 

a,(t) a3(t) an({ 

t h  aria that f and p possess only one non-zero term which must be in the n 

The primary reason tha t  the bound development applies t o  t h i s  form is t h a t  the 

row. 
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expression f o r  xn (1519 

n-1 

%n Pn i t 1  
1 1 pixi 9 - -  + a( t )  (49 )  

resu l t ing  from the assumption @, can be subst i tuted i n t o  ( 4 7 )  thus reducing 

the order of t h i s  vector d i f f e r e n t i a l  equation by one and resu l t ing  i n  a l i n e a r  

time-independent equation having bounded input,  a(t). 

t ion  are not d i f f i c u l t  t o  study due t o  the  absence of nonl inear i t ies ,  t i m e -  

Solutions of t h i s  equa- 

var ia t ion  and possibly unknown terms. 

same would be t rue  i f  f and 

t h i s  case the condition I J Z S ~ '  &- solved for xi. 

It is straight-forward t o  see t h a t  the 

had non-zero terms in the  ith row only, Xn 

This would have the fotm 

where a ( t )  would be l imited by 

Idtl < LIPi 

This extension could be carr ied out only i f  pi # 0.  

It is also possible t o  extend the discussion t o  treat non-canonic matrices 

A(t). 

duced-system matrix A (t) and they would have t o  be considered i n  the bound 

estimation. Such terms could a f f ec t  conservativeness of the estimate. 

Bowever, th is  allows time-variable coeff ic ients  t o  en ter  i n t o  the  re- 

r 

Extension is also possible t o  systems which have more than one non-zero 

a 

term i n  f and I?. but  qual i f icat ions become so tedious tha t  t h i s  is  not con- 

s idered fur ther .  
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